Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 11(10): 10583-10590, 2017 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-28956598

RESUMO

In situ electron microscopy provides remarkably high spatial resolution, yet electron beam irradiation often damages soft materials and perturbs dynamic processes, requiring samples to be very robust. Here, we instead noninvasively image the dynamics of metal and polymer nanoparticles in a liquid environment with subdiffraction resolution using cathodoluminescence-activated imaging by resonant energy transfer (CLAIRE). In CLAIRE, a free-standing scintillator film serves as a nanoscale optical excitation source when excited by a low energy, focused electron beam. We capture the nanoscale dynamics of these particles translating along and desorbing from the scintillator surface and demonstrate 50 ms frame acquisition and a range of imaging of at least 20 nm from the scintillator surface. Furthermore, in contrast with in situ electron microscopy, CLAIRE provides spectral selectivity instead of relying on scattering alone. We also demonstrate through quantitative modeling that the CLAIRE signal from metal nanoparticles is impacted by multiplasmonic mode interferences. Our findings demonstrate that CLAIRE is a promising, noninvasive approach for super-resolution imaging for soft and fluid materials with high spatial and temporal resolution.

2.
Nano Lett ; 17(2): 1028-1033, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28134530

RESUMO

The distinct physical properties of hybrid organic-inorganic materials can lead to unexpected nonequilibrium phenomena that are difficult to characterize due to the broad range of length and time scales involved. For instance, mixed halide hybrid perovskites are promising materials for optoelectronics, yet bulk measurements suggest the halides reversibly phase separate upon photoexcitation. By combining nanoscale imaging and multiscale modeling, we find that the nature of halide demixing in these materials is distinct from macroscopic phase separation. We propose that the localized strain induced by a single photoexcited charge interacting with the soft, ionic lattice is sufficient to promote halide phase separation and nucleate a light-stabilized, low-bandgap, ∼8 nm iodide-rich cluster. The limited extent of this polaron is essential to promote demixing because by contrast bulk strain would simply be relaxed. Photoinduced phase separation is therefore a consequence of the unique electromechanical properties of this hybrid class of materials. Exploiting photoinduced phase separation and other nonequilibrium phenomena in hybrid materials more generally could expand applications in sensing, switching, memory, and energy storage.

3.
Nano Lett ; 15(5): 3383-90, 2015 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-25855869

RESUMO

We demonstrate a new nanoimaging platform in which optical excitations generated by a low-energy electron beam in an ultrathin scintillator are used as a noninvasive, near-field optical scanning probe of an underlying sample. We obtain optical images of Al nanostructures with 46 nm resolution and validate the noninvasiveness of this approach by imaging a conjugated polymer film otherwise incompatible with electron microscopy due to electron-induced damage. The high resolution, speed, and noninvasiveness of this "cathodoluminescence-activated" platform also show promise for super-resolution bioimaging.

4.
Cell ; 157(3): 702-713, 2014 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-24766813

RESUMO

Multimeric, ring-shaped molecular motors rely on the coordinated action of their subunits to perform crucial biological functions. During these tasks, motors often change their operation in response to regulatory signals. Here, we investigate a viral packaging machine as it fills the capsid with DNA and encounters increasing internal pressure. We find that the motor rotates the DNA during packaging and that the rotation per base pair increases with filling. This change accompanies a reduction in the motor's step size. We propose that these adjustments preserve motor coordination by allowing one subunit to make periodic, specific, and regulatory contacts with the DNA. At high filling, we also observe the downregulation of the ATP-binding rate and the emergence of long-lived pauses, suggesting a throttling-down mechanism employed by the motor near the completion of packaging. This study illustrates how a biological motor adjusts its operation in response to changing conditions, while remaining highly coordinated.


Assuntos
Fagos Bacilares/fisiologia , Proteínas Motores Moleculares/metabolismo , Proteínas Virais/metabolismo , Montagem de Vírus , Trifosfato de Adenosina/metabolismo , Capsídeo/química , DNA Viral/metabolismo
5.
ACS Nano ; 7(11): 10397-404, 2013 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-24156282

RESUMO

Demand for visualizing nanoscale dynamics in biological and advanced materials continues to drive the development of subdiffraction optical probes. While many strategies employ scanning tips for this purpose, we instead exploit a focused electron beam to create scannable nanoscale optical excitations in an epitaxially grown thin-film of cerium-doped yttrium aluminum perovskite, whose cathodoluminescence response is bright, robust, and spatially resolved to 18 nm. We also demonstrate lithographic patterning of the film's luminescence at the nanoscale. We anticipate that converting these films into free-standing membranes will yield a powerful near-field optical microscopy without the complication of mechanical scanning.


Assuntos
Eletrodos , Luminescência , Óptica e Fotônica/métodos , Alumínio/química , Cério/química , Elétrons , Desenho de Equipamento , Lasers , Teste de Materiais , Método de Monte Carlo , Nanopartículas/química , Nanoestruturas/química , Nanotecnologia/métodos , Propriedades de Superfície
6.
Cell ; 151(5): 1017-28, 2012 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-23178121

RESUMO

Ring NTPases of the ASCE superfamily perform a variety of cellular functions. An important question about the operation of these molecular machines is how the ring subunits coordinate their chemical and mechanical transitions. Here, we present a comprehensive mechanochemical characterization of a homomeric ring ATPase-the bacteriophage φ29 packaging motor-a homopentamer that translocates double-stranded DNA in cycles composed of alternating dwells and bursts. We use high-resolution optical tweezers to determine the effect of nucleotide analogs on the cycle. We find that ATP hydrolysis occurs sequentially during the burst and that ADP release is interlaced with ATP binding during the dwell, revealing a high degree of coordination among ring subunits. Moreover, we show that the motor displays an unexpected division of labor: although all subunits of the homopentamer bind and hydrolyze ATP during each cycle, only four participate in translocation, whereas the remaining subunit plays an ATP-dependent regulatory role.


Assuntos
Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Fagos Bacilares/enzimologia , DNA/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , DNA/química , Hidrólise , Modelos Moleculares , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo
7.
Nano Lett ; 10(11): 4697-701, 2010 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-20923183

RESUMO

The ability to strongly and sequence-specifically attach modifications such as fluorophores and haptens to individual double-stranded (ds) DNA molecules is critical to a variety of single-molecule experiments. We propose using modified peptide nucleic acids (PNAs) for this purpose and implement them in two model single-molecule experiments where individual DNA molecules are manipulated via microfluidic flow and optical tweezers, respectively. We demonstrate that PNAs are versatile and robust sequence-specific tethers.


Assuntos
Micromanipulação/métodos , Técnicas de Sonda Molecular , Sondas Moleculares/isolamento & purificação , Pinças Ópticas , Ácidos Nucleicos Peptídicos/isolamento & purificação , Análise de Sequência de DNA/métodos , Sequência de Bases , Sondas Moleculares/química , Dados de Sequência Molecular , Ácidos Nucleicos Peptídicos/química
8.
J Mol Biol ; 400(2): 186-203, 2010 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-20452360

RESUMO

The pentameric ATPase motor gp16 packages double-stranded DNA into the bacteriophage phi29 virus capsid. On the basis of the results of single-molecule experimental studies, we propose a push and roll mechanism to explain how the packaging motor translocates the DNA in bursts of four 2.5 bp power strokes, while rotating the DNA. In this mechanism, each power stroke accompanies P(i) release after ATP hydrolysis. Since the high-resolution structure of the gp16 motor is not available, we borrowed characterized features from the P4 RNA packaging motor in bacteriophage phi12. For each power stroke, a lumenal lever from a single subunit is electrostatically steered to the DNA backbone. The lever then pushes sterically, orthogonal to the backbone axis, such that the right-handed DNA helix is translocated and rotated in a left-handed direction. The electrostatic association allows tight coupling between the lever and the DNA and prevents DNA from slipping back. The lever affinity for DNA decreases towards the end of the power stroke and the DNA rolls to the lever on the next subunit. Each power stroke facilitates ATP hydrolysis in the next catalytic site by inserting an Arg -finger into the site, as captured in phi12-P4. At the end of every four power strokes, ADP release happens slowly, so the cycle pauses constituting a dwell phase during which four ATPs are loaded into the catalytic sites. The next burst phase of four power strokes starts once spontaneous ATP hydrolysis takes place in the fifth site without insertion of an Arg finger. The push and roll model provides a new perspective on how a multimeric ATPase transports DNA, and it might apply to other ring motors as well.


Assuntos
Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Empacotamento do DNA , DNA Viral , Proteínas Virais/química , Proteínas Virais/metabolismo , Adenosina Trifosfatases/genética , Bacteriófagos/genética , Bacteriófagos/metabolismo , DNA Viral/química , DNA Viral/metabolismo , Modelos Moleculares , Conformação de Ácido Nucleico , Pinças Ópticas , Conformação Proteica , Eletricidade Estática , Processos Estocásticos , Estresse Mecânico , Proteínas Virais/genética
9.
PLoS Biol ; 5(3): e59, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17311473

RESUMO

The bacteriophage phi29 generates large forces to compact its double-stranded DNA genome into a protein capsid by means of a portal motor complex. Several mechanical models for the generation of these high forces by the motor complex predict coupling of DNA translocation to rotation of the head-tail connector dodecamer. Putative connector rotation is investigated here by combining the methods of single-molecule force spectroscopy with polarization-sensitive single-molecule fluorescence. In our experiment, we observe motor function in several packaging complexes in parallel using video microscopy of bead position in a magnetic trap. At the same time, we follow the orientation of single fluorophores attached to the portal motor connector. From our data, we can exclude connector rotation with greater than 99% probability and therefore answer a long-standing mechanistic question.


Assuntos
Fagos Bacilares/genética , Capsídeo/química , Empacotamento do DNA , DNA Viral/genética , DNA Viral/química , Fluorescência , Conformação de Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...